Some refinements of operator inequalities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some refinements of operator reverse AM-GM mean inequalities

In this paper, we prove the operator inequalities as follows: Let [Formula: see text] be positive operators on a Hilbert space with [Formula: see text] and [Formula: see text]. Then for every positive unital linear map Φ, [Formula: see text] and [Formula: see text] Moreover, we prove Lin's conjecture when [Formula: see text].

متن کامل

Refinements of Some Partition Inequalities

In the present paper we initiate the study of a certain kind of partition inequality, by showing, for example, that if M 5 is an integer and the integers a and b are relatively prime to M and satisfy 1  a < b < M/2, and the c(m,n) are defined by 1 (sqa, sqM a; qM )1 1 (sqb, sqM b; qM )1 := X

متن کامل

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

Some Refinements of Inequalities for Circular Functions

Zhengjie Sun and Ling Zhu Department of Mathematics, Zhejiang Gongshang University, Zhejiang, Hangzhou 310018, China Correspondence should be addressed to Ling Zhu, [email protected] Received 22 August 2011; Accepted 4 October 2011 Academic Editor: Morteza Rafei Copyright q 2011 Z. Sun and L. Zhu. This is an open access article distributed under the Creative Commons Attribution License, which...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ScienceAsia

سال: 2017

ISSN: 1513-1874

DOI: 10.2306/scienceasia1513-1874.2017.43.254